
Jihong Kim

Seoul National University

NVRAMOS 2020

Evanesco: Architectural Support
for Efficient Data Sanitization

in Modern Flash-Based Storage Systems

Myungsuk Kim, Jisung Park, Geonhee Cho, Yoona Kim,
Lois Orosa, Onur Mutlu, and Jihong Kim

Seoul National University

SAFARI Research Group, ETH Zürich

ASPLOS 2020

Evanesco: Architectural Support
for Efficient Data Sanitization

in Modern Flash-Based Storage Systems

Executive Summary

 Motivation: Secure deletion is essential in storage systems as modern computing
systems process a large amount of security-sensitive data.

 Problem: It is challenging to support data sanitization in NAND flash-based SSDs.

 Erase-before-write property no overwrite on stored data

 Physical data destruction  high performance & reliability overheads

 Evanesco: A low-cost data-sanitization technique w/o reliability issues

 Uses on-chip access-control mechanisms instead of physically destroying data

 Manages access-permission (AP) flags inside a NAND flash chip

 Data is not accessible once the flash controller sets the data’s AP flag to disabled.

 An AP flag cannot be reset before erasing the corresponding data.

 Results

 Provides the same level of reliability as an unmodified SSD (w/o data-sanitization support)

 Validated w/ 160 real state-of-the-art 3D NAND flash chips

 Significantly improves performance and lifetime over existing data-sanitization techniques

 Provides comparable (94.5%) performance with an unmodified SSD

3

Outline

 Secure Deletion in NAND Flash-Based SSDs

 Evanesco: Lock-Based Data Sanitization

 pageLock: Page-Level Data Sanitization

 blockLock: Block-Level Data Sanitization

 SecureSSD: An Evanesco-Enabled SSD

 Evaluation

 Conclusion

4

 Secure Deletion in NAND Flash-Based SSDs

 Evanesco: Lock-Based Data Sanitization

 pageLock: Page-Level Data Sanitization

 blockLock: Block-Level Data Sanitization

 SecureSSD: An Evanesco-Enabled SSD

 Evaluation

 Conclusion

Secure Deletion in Storage Systems

 Security-sensitive data is increasing in modern storage systems.

5

Private Message

2003.12.03

Private Photo

Confidential Data (e.g., Medical Record)

Once a user deletes security-sensitive data,
a storage system should guarantee its irrecoverability

Data Versioning Problem

 Obsolete data in NAND flash-based solid-state drives (SSDs)

 Old versions of updated or deleted files can remain in the SSD for a long time.

6

Time (in disk writes)
1.25 2.5 3.750

N
u

m
b

e
r

o
f

p
a

g
e

s
[1

0
3
] 20

0

5

10

15
f: a heavily-updated DB file

of valid pages of file f

of invalid pages of file f

𝒕𝟎: running out of free space

Updated or deleted data of a file can remain in SSDs
due to unique features of NAND flash memory

NAND Flash Memory Organization & Operations

NAND String

Page(s): Unit of read and program
(e.g., 131,072 cells: 16-KiB page)

7

Block: Erase unit
(e.g., 576 pages: 9-MiB block)

Erase-before-write: A block needs to be erased
before programming a page (i.e., no overwrite on a page)

1

…

BL0

1

0

0

1

BL1

…

0

1

0

0

BL2

…

1

1

1

1

BLn-1

…

0

0

0

…

Peripherals
(Page Buffer, Decoder, …)

Block#1

Block#2
…

Flash Cell

BitLine

Erased (1)

Programmed (0)

Flash-Based SSD

Chip#0 Chip#1

NAND Flash-Based SSD

8

File System

CTRL

DRAM

NAND NAND

0 1 2 3 4 5 6 7 8

…

0

1

2

3

Block#0

4

5

6

Page7

Block#1

8

9

10

Block#2

12

13

14

15

Block#3

A0
A2
B1

A1
B0
B2

A
0

A
1

A
2

B
0

B
1

B
2

F
la

sh
 C

o
n

tr
o

ll
e

r

Flash Translation Layer (FTL)

 Address translation

 Distributes host writes to fully exploit internal parallelism

 Out-of-place updates

 Logical-to-physical (L2P) mappings (e.g., LPA 1  PPA 8)

 Garbage collection (GC)

 Reclaims free pages for future host writes

 Selects a victim block w/ the smallest number of valid pages

 Additional copy operations to move valid pages

 Page-status information (e.g., B0: invalid)

A1 B2’

Logical Page Address

Physical Page Address

A.png B.db

A
0

A
1

A
2

B
1

A0
A2
B1

A1
B0
B2
B0
B2

B
2’

B
0’

11B0’ B2’B0’ B2’

B
2’

B
0’

NAND NAND

Logical block-device view
that supports overwrites

Update B0 and B2

GC Victim

Copy valid pages

Flash-Based SSD

Chip#0 Chip#1

Data Deletion in NAND Flash-Based Storage Systems

9

File System

CTRL

DRAM

NAND NAND

0 1 2 3 4 5 6 7 8

…

0

1

2

3

Block#0

4

5

6

7

Block#1

8

9

10

Block#2

12

13

14

15

Block#3

A0
A2
B1

F
la

sh
 C

o
n

tr
o

ll
e

r

Flash Translation Layer (FTL)

A1 B2’

A.png B.db

A
0

A
1

A
2

B
1

A0
A2
B1

11B0’B0’

B
2’

B
0’

A.png

A
0

A
1

A
2

LPA PPA
0 0

L2P Mapping Table Page Status Table

1 4

2 1

3

4 2

5 12

… …

11 N/A

PPA Status
0 valid
1 valid
2 valid
3

4 valid
5

… …
15 free

N/A

N/A
N/A

A1

A0
A2invalid

invalid

invalid5

invalid

B
1’

N/A

N/A

N/A

A0
A2

A
0

A
1

A
2

invalid
invalid

A1

invalid

B
1’

B1’B1’

B1B1

3

5
valid

invalid
free

Delete A

NAND NAND

Update mapping & statusUpdate
status

Update
mapping

Out-of-place update

Update B1

A1
Invalid data remains in NAND flash chips
until GC erases the corresponding block(s)

Flash-Based SSD

Chip#0 Chip#1

Security Vulnerability of NAND Flash-Based SSDs

10

File System

CTRL

DRAM

NAND NAND

0 1 2 3 4 5 6 7 8

…

0

1

2

3

Block#0

4

5

6

7

Block#1

8

9

10

Block#2

12

13

14

15

Block#3

A0
A2
B1

F
la

sh
 C

o
n

tr
o

ll
e

r

Flash Translation Layer (FTL)

A1 B2’

A.png B.db

A0
A2
B1

11B0’B0’

B
2’

B
0’

A.png

LPA PPA
0 0

L2P Mapping Table Page Status Table

1 4

2 1

3

4 2

5 12

… …

11 N/A

PPA Status
0 valid
1 valid
2 valid
3

4 valid
5

… …
15 free

N/A

N/A
N/A

A0
A2invalid

invalid

invalid5

invalid

N/A

N/A

N/A

A
0

A
1

A
2

invalid
invalid
invalid

B
1’

B1’B1’

B1

3

5
valid

invalid
free A1

Direct access to SSD

No mappings
to invalid PPAs

NAND NAND

Custom Flash Controller

Direct access
to raw NAND chips

Forensic Tool

A0 A1 A2 B1

De-solder

A.png B.db

Entire
Deleted File

Previous Ver.
of Updated File

Deleted or updated files can be recovered
by directly accessing raw NAND flash chips

Existing Solution: Immediate Block Erasure

 Immediately erases the block that stores data to be sanitized

 High performance and lifetime overheads due to Erase-before-write property

 Needs to copy all the valid pages stored in the same block

11

Target Block

576 Pages

Valid

Invalid

Free

Wasted

Hundreds of Copies:
𝒕 = 𝑵𝒄𝒐𝒑𝒚 × 𝒕𝑹𝑬𝑨𝑫 + 𝒕𝑷𝑹𝑶𝑮

Free Block

…

Target Page

…

Immediate block erasure:
High performance and lifetime overheads

Existing Solution: Reprogramming the Page

 Scrubbing [Wei+, FAST’2011]: Reprograms all the flash cells storing an invalid page

 Destroys the page data w/o block erasure

 Performance and lifetime overheads in Multi-level cell (MLC) NAND flash memory

 Needs to copy all the valid pages stored in the same flash cells

 Reliability issues: cell-to-cell interference

12

Target Block

Target Page

…

Cell-to-cell
interference

Share
flash cells

Existing solutions incur
performance, lifetime, and reliability problems

in modern NAND flash memory

Valid

Invalid

Free

Scrubbed

Outline

 Secure Deletion in NAND Flash-Based SSDs

 Evanesco: Lock-Based Data Sanitization

 pageLock: Page-Level Data Sanitization

 blockLock: Block-Level Data Sanitization

 SecureSSD: An Evanesco-Enabled SSD

 Evaluation

 Conclusion

13

 Key idea: Allow a NAND flash chip to be aware of data validity

 Prevent access to invalid data at the chip level w/o destroying the data

 Low overhead: No copy operation to move valid pages stored in the same cells

 High reliability: No cell-to-cell interference to other valid pages

 Two new NAND flash commands: pageLock (pLock) and blockLock (bLock)

 pLock: disables access to a page

 bLock: disables access to all the page in a block

Evanesco: Access Control-Based Sanitization

14

read(2)

00…0

(all-zero data)

pLock(3)

bLock(0)

0

1

2

3

Block#0

4

5

6

7

Block#1

B0’

A0
A1
A2

NAND

B0B0

E

E

E

E

E

E

E

E

D

D

D

D

Flags#1

Flags#0
B0

A0
A1
A2

A0
A1
A2

E:Enabled, D:Disabled

Outline

 Secure Deletion in NAND Flash-Based SSDs

 Evanesco: Lock-Based Data Sanitization

 pageLock: Page-Level Data Sanitization

 blockLock: Block-Level Data Sanitization

 SecureSSD: An Evanesco-Enabled SSD

 Evaluation

 Conclusion

15

 Implements page access-permission (pAP) flags using spare cells

 A disabled page cannot be enabled until the entire block is erased.

 No additional command to access a pAP flag: read with the page data at the same time

 Prevents transfer of data from a disabled page

 The bridge transistor disconnects the page buffer from the data-out circuitry.

pLock: Page-Level Data Sanitization

Data Area Spare Area (for metadata)

Page Buffer

16

⋯

Page#1

Page#2

⋯

Page#N–1

Page#0Block Flash Cell
Erased (1)

Programmed (0)

Bitline (BL)

Flag Cell
Enabled (1)

Disabled (0)

Bridge Transistor

pLock(2) Flag-cell programmingRead(2)

1 0 1 0 0 1 0 0: off (disconnect)

0000…000
(all-zero data)

Page Buffer Data Out

 Problem 1: Multiple pages are stored in the same flash cell.

 Solution: Use multiple flags for each row (e.g., 3 flags for triple-level cell (TLC) NAND)

 Problem 2: A flag cell can misbehave unintentional disabling or enabling of a page

 Solution: Use multiple flag cells for each pAP flag (k-modular redundancy scheme)

Reliability issues
1. Cell-to-cell interference b/w flag cells

in the same NAND strings
2. Program disturbance due to high program

voltage to the other cells at the same row

Solutions
1. Use flag cells in single-level cell (SLC) mode
- More robust to interference and disturbance
- Reduces pLock latency
2. One-shot programming w/ low voltage
- Reduces interference and disturbance

pLock: Implementation Details

17

Data Out
Bridge Transistor

Data Cells MSB CSB LSB

pAP Flags

Majority Circuit

k

BLn-1 BLn+2kBLn BLn+k BLn+3k-1

LSB0
CSB1
MSB2
LSB3

Block#k

4
5

⋮

Page Buffer

CSB
MSB

⋮

No cell-to-cell interference

AP Flag Selector

k LSB

pLock: Prevents data transfer for a disabled page
 Reliable and copy-free per-page sanitization

Outline

 Secure Deletion in NAND Flash-Based SSDs

 Evanesco: Lock-Based Data Sanitization

 pageLock: Page-Level Data Sanitization

 blockLock: Block-Level Data Sanitization

 SecureSSD: An Evanesco-Enabled SSD

 Evaluation

 Conclusion

18

Problem with Page-Level Sanitization

 Nontrivial performance overhead in invalidating an entire block

 Deleting a 1-GiB video  65,536 pLock operations (page size = 16 KiB)

 Invalidating blocks in SSD management tasks (GC, wear-leveling, …)

 Immediate block erasure is not feasible in 3D NAND flash memory.

 Open-block problem: Reliability degradation due to a long time interval b/w erasing and
programming a block  A block should be erased lazily.

19

0.8

1.0

1.2

1.4

Length of open interval

Zero Very short Short Medium Long Very long

N
o

rm
a

li
ze

d
 R

B
E

R
(R

a
w

 B
it

 E
rr

o
r

R
a

te
) No P/E cycling After P/E cycling After P/E cycling + retention

𝟑𝟒%

Vref

(activate)
VCC

(activate)

 Key idea: Program the string-select line (SSL) of a block

 3D NAND flash memory implements an SSL using flash cells.

 SSL programming: Disconnects all the pages from bitlines (i.e., from the page buffer)

bLock: Block-Level Sanitization

20

Block#k

BL0 BLn-1

SSL#0

SSL#k

SSL#N

No voltage
(deactivate)

No voltage
(deactivate)

bLock(k)

⋯

⋯

SSL programming

Disconnected from BLs

Block#0

Block#N-1

BL0 BLn-1

Data OutPage Buffer
0 0 0 0 0 0 0 0All-zero data

Cannot activate
w/ normal voltage

0 0 1 0 1 1 0 1page read

 No current through strings

Flash Cell

bLock: Programs the SSL of block
Disconnects all the pages from bitlines

until the block is physically erased

Outline

 Secure Deletion in NAND Flash-Based SSDs

 Evanesco: Lock-Based Data Sanitization

 pageLock: Page-Level Data Sanitization

 blockLock: Block-Level Data Sanitization

 SecureSSD: An Evanesco-Enabled SSD

 Evaluation

 Conclusion

21

⋯

Block#m

Multiple invalid pages +
no valid pages in the block

⋯

Block#k

Valid Invalid

SecureSSD: An Evanesco-Enabled SSD

 An SSD that supports immediate data sanitization of updated or deleted data

 Lock manager issues pLock and bLock commands depending on the block’s status.

Delete A

Trim (discard) LPAs

bLock

pLock

File System

A.png B.doc

Application

SecureSSD

Evanesco-Aware FTL

L2P
Mapping

Table

Page
Status
Table

Lock
Manager

Flash ChipFlash Chip

Flash Chip

A.png B.doc

pLock

bLock

⋯

A.png

A.png

Lock
Manager

22

SecureSSD: Selective Data Sanitization

 SecureSSD avoids unnecessary pLock and bLock for security-insensitive data.

 A user sets the security requirements of written data w/ extended I/O interfaces.

Delete B

Trim (discard) LPAs

File System

A.png B.doc

Application

SecureSSD

Evanesco-Aware FTL

L2P
Mapping

Table

Page
Status
Table

Lock
Manager

Flash ChipFlash Chip

Flash Chip

A.png B.doc

⋯

A.png

A.png

Extended
PG Status

Table

fd = open(“B.doc”, O_CREATE|O_INSEC);

// create security-insensitive file B.doc

bio->bi_of =| REQ_OP_INSEC_WRITE;

// set low security requirement

Set page status to INSECURE

B.doc

Invalidation w/o pLock or bLock

SecureSSD minimizes data-sanitization overheads

23

Outline

 Secure Deletion in NAND Flash-Based SSDs

 Evanesco: Lock-Based Data Sanitization

 pageLock: Page-Level Data Sanitization

 blockLock: Block-Level Data Sanitization

 SecureSSD: An Evanesco-Enabled SSD

 Evaluation

 Conclusion

24

Methodology

 Design space exploration for pLock and bLock

 Using 160 real state-of-the-art 3D triple-level-cell (TLC) NAND flash chips

 To find the best operation parameters w/o reliability degradation

 pLock: 100-us latency w/ 9 flag cells per page

 bLock: 300-us latency

 tREAD = 100 us, tPROG = 700 us, tBERS = 3.5 ms

 Simulator: Open SSD-development platform (FlashBench [Lee+, RSP’2012])

 32-GiB storage capacity

 576 pages per block

 16-KiB page size

 Compared SSDs

 erSSD: Erases the entire block after copying valid pages in the block

 scrSSD: Performs scrubbing after copying valid pages in the same cells [Wei+, FAST’2011]

 Workloads

 Three server workloads: MailServer, DBServer, FileServer

 Mobile workload collected from an Android smartphone (Samsung Galaxy S2)

25

Results: Performance

26

N
o

rm
a

li
ze

d
 I

O
P

S

0.0

0.2

0.4

0.6

0.8

1.0

MailServer DBServer FileServer Mobile

erSSD scrSSD secSSD

SecureSSD significantly reduces performance overhead
of data sanitization (11% slowdown at most)

0.98 0.96 0.950.89

0
.0

0
4

0
.0

0
3

0
.0

0
0

7

0
.0

3
4

0
.4

4

0
.2

1

0
.2

0
.5

6

Results: Lifetime

27

N
o

rm
a

li
ze

d
 W

A
F

0

1

2

3

4

5

MailServer DBServer FileServer Mobile

erSSD scrSSD secSSD

No additional copy in SecureSSD: No lifetime overhead

Write Amplification Factor 𝑊𝐴𝐹 =
𝑜𝑓 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑝𝑎𝑔𝑒𝑠 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑏𝑦 𝑡ℎ𝑒 ℎ𝑜𝑠𝑡 𝑠𝑦𝑠𝑡𝑒𝑚

𝑜𝑓 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑝𝑎𝑔𝑒𝑠 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑏𝑦 𝑡ℎ𝑒 𝑆𝑆𝐷

1
8

4
.9

2
8

5
.3

2
4

5
.4

3
2

0
.2

2.9
3.3

4.4

1.5

28

N
o

rm
a

li
ze

d
 I

O
P

S

0.8

0.9

1.0

MailServer DBServer FileServer Mobile

60% 70% 80% 90% 100%% of security-sensitive data:

Selective data sanitization minimizes performance overheads
(6% slowdown at most with 60% security-sensitive data)

Results: Effect of Selective Data Sanitization

0.99
0.97

0.94

0.89

0.97
0.96

0.99

0.95

Other Analyses in the Paper

 Empirical Study on Invalid Data in SSDs

 Reliability Issues in Physical Data Destruction

 Design Space Exploration for pLock and bLock

 Effectiveness of bLock command

29

Outline

 Secure Deletion in NAND Flash-Based SSDs

 Evanesco: Lock-Based Data Sanitization

 pageLock: Page-Level Data Sanitization

 blockLock: Block-Level Data Sanitization

 SecureSSD: An Evanesco-Enabled SSD

 Evaluation

 Conclusion

30

Conclusion

 Challenges of data sanitization in NAND flash-based SSDs:

 Erase-before-write property no overwrite on stored data

 Physical data destruction  high performance & reliability overheads

 Evanesco: Uses on-chip access-control mechanisms

 pLock: Page-level data sanitization

 Implements the access-permission flag of each page using spare cells

 bLock: Block-level data sanitization

 Programs the SSL of a block to disconnect all pages

 SecureSSD: An Evanesco-Enabled SSD

 Supports selective data sanitization to reduce performance overheads

 Results

 Provides the same level of reliability of an unmodified SSD

 Validated w/ 160 real state-of-the-art 3D NAND flash chips

 Significantly improves performance and lifetime over existing data-sanitization techniques

 Provides comparable (94.5%) performance with an unmodified SSD

31

