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Executive Summary

 Motivation: Secure deletion is essential in storage systems as modern computing 
systems process a large amount of security-sensitive data.

 Problem: It is challenging to support data sanitization in NAND flash-based SSDs.

 Erase-before-write property no overwrite on stored data

 Physical data destruction  high performance & reliability overheads

 Evanesco: A low-cost data-sanitization technique w/o reliability issues

 Uses on-chip access-control mechanisms instead of physically destroying data 

 Manages access-permission (AP) flags inside a NAND flash chip

 Data is not accessible once the flash controller sets the data’s AP flag to disabled. 

 An AP flag cannot be reset before erasing the corresponding data.

 Results

 Provides the same level of reliability as an unmodified SSD (w/o data-sanitization support)

 Validated w/ 160 real state-of-the-art 3D NAND flash chips

 Significantly improves performance and lifetime over existing data-sanitization techniques

 Provides comparable (94.5%) performance with an unmodified SSD
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Secure Deletion in Storage Systems

 Security-sensitive data is increasing in modern storage systems.
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Data Versioning Problem

 Obsolete data in NAND flash-based solid-state drives (SSDs)

 Old versions of updated or deleted files can remain in the SSD for a long time.
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NAND Flash Memory Organization & Operations

NAND String

Page(s): Unit of read and program 
(e.g., 131,072 cells: 16-KiB page)
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Flash-Based SSD

Chip#0 Chip#1

NAND Flash-Based SSD

8

File System

CTRL

DRAM

NAND NAND

0 1 2 3 4 5 6 7 8

…

0

1

2

3

Block#0

4

5

6

Page7

Block#1

8

9

10

Block#2

12

13

14

15

Block#3

A0
A2
B1

A1
B0
B2

A
0

A
1

A
2

B
0

B
1

B
2

F
la

sh
 C

o
n

tr
o

ll
e

r

Flash Translation Layer (FTL)

 Address translation

 Distributes host writes to fully exploit internal parallelism

 Out-of-place updates

 Logical-to-physical (L2P) mappings (e.g., LPA 1  PPA 8)

 Garbage collection (GC)

 Reclaims free pages for future host writes

 Selects a victim block w/ the smallest number of valid pages

 Additional copy operations to move valid pages

 Page-status information (e.g., B0: invalid)

A1 B2’

Logical Page Address

Physical Page Address

A.png B.db

A
0

A
1

A
2

B
1

A0
A2
B1

A1
B0
B2
B0
B2

B
2’

B
0’

11B0’ B2’B0’ B2’

B
2’

B
0’

NAND NAND

Logical block-device view 
that supports overwrites

Update B0 and B2

GC Victim

Copy valid pages



Flash-Based SSD

Chip#0 Chip#1

Data Deletion in NAND Flash-Based Storage Systems
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Flash-Based SSD

Chip#0 Chip#1

Security Vulnerability of NAND Flash-Based SSDs
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Existing Solution: Immediate Block Erasure

 Immediately erases the block that stores data to be sanitized

 High performance and lifetime overheads due to Erase-before-write property

 Needs to copy all the valid pages stored in the same block
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Existing Solution: Reprogramming the Page

 Scrubbing [Wei+, FAST’2011]: Reprograms all the flash cells storing an invalid page

 Destroys the page data w/o block erasure

 Performance and lifetime overheads in Multi-level cell (MLC) NAND flash memory

 Needs to copy all the valid pages stored in the same flash cells 

 Reliability issues: cell-to-cell interference
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 Key idea: Allow a NAND flash chip to be aware of data validity

 Prevent access to invalid data at the chip level w/o destroying the data

 Low overhead: No copy operation to move valid pages stored in the same cells

 High reliability: No cell-to-cell interference to other valid pages

 Two new NAND flash commands: pageLock (pLock) and blockLock (bLock)

 pLock: disables access to a page

 bLock: disables access to all the page in a block

Evanesco: Access Control-Based Sanitization
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 Implements page access-permission (pAP) flags using spare cells

 A disabled page cannot be enabled until the entire block is erased.

 No additional command to access a pAP flag: read with the page data at the same time

 Prevents transfer of data from a disabled page

 The bridge transistor disconnects the page buffer from the data-out circuitry.

pLock: Page-Level Data Sanitization

Data Area Spare Area (for metadata)

Page Buffer
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 Problem 1: Multiple pages are stored in the same flash cell.

 Solution: Use multiple flags for each row (e.g., 3 flags for triple-level cell (TLC) NAND)

 Problem 2: A flag cell can misbehave unintentional disabling or enabling of a page

 Solution: Use multiple flag cells for each pAP flag (k-modular redundancy scheme)

Reliability issues
1. Cell-to-cell interference b/w flag cells 

in the same NAND strings
2. Program disturbance due to high program 

voltage to the other cells at the same row

Solutions
1. Use flag cells in single-level cell (SLC) mode
- More robust to interference and disturbance
- Reduces pLock latency
2. One-shot programming w/ low voltage
- Reduces interference and disturbance

pLock: Implementation Details
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Problem with Page-Level Sanitization

 Nontrivial performance overhead in invalidating an entire block

 Deleting a 1-GiB video  65,536 pLock operations (page size = 16 KiB)

 Invalidating blocks in SSD management tasks (GC, wear-leveling, …)

 Immediate block erasure is not feasible in 3D NAND flash memory.

 Open-block problem: Reliability degradation due to a long time interval b/w erasing and 
programming a block  A block should be erased lazily.
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Vref

(activate)
VCC

(activate)

 Key idea: Program the string-select line (SSL) of a block

 3D NAND flash memory implements an SSL using flash cells.

 SSL programming: Disconnects all the pages from bitlines (i.e., from the page buffer)

bLock: Block-Level Sanitization
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 An SSD that supports immediate data sanitization of updated or deleted data

 Lock manager issues pLock and bLock commands depending on the block’s status.

Delete A

Trim (discard) LPAs

bLock

pLock

File System

A.png B.doc

Application

SecureSSD

Evanesco-Aware FTL

L2P
Mapping

Table

Page
Status
Table

Lock
Manager

Flash ChipFlash Chip

Flash Chip

A.png B.doc

pLock

bLock

⋯

A.png

A.png

Lock
Manager

22



SecureSSD: Selective Data Sanitization

 SecureSSD avoids unnecessary pLock and bLock for security-insensitive data.

 A user sets the security requirements of written data w/ extended I/O interfaces.
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SecureSSD minimizes data-sanitization overheads
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Methodology

 Design space exploration for pLock and bLock

 Using 160 real state-of-the-art 3D triple-level-cell (TLC) NAND flash chips

 To find the best operation parameters w/o reliability degradation

 pLock: 100-us latency w/ 9 flag cells per page

 bLock: 300-us latency

 tREAD = 100 us, tPROG = 700 us, tBERS = 3.5 ms

 Simulator: Open SSD-development platform (FlashBench [Lee+, RSP’2012])

 32-GiB storage capacity

 576 pages per block

 16-KiB page size

 Compared SSDs

 erSSD: Erases the entire block after copying valid pages in the block

 scrSSD: Performs scrubbing after copying valid pages in the same cells [Wei+, FAST’2011]

 Workloads

 Three server workloads: MailServer, DBServer, FileServer

 Mobile workload collected from an Android smartphone (Samsung Galaxy S2)
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Results: Performance

26

N
o

rm
a

li
ze

d
 I

O
P

S

0.0

0.2

0.4

0.6

0.8

1.0

MailServer DBServer FileServer Mobile

erSSD scrSSD secSSD

SecureSSD significantly reduces performance overhead
of data sanitization (11% slowdown at most)

0.98 0.96 0.950.89

0
.0

0
4

0
.0

0
3

0
.0

0
0

7

0
.0

3
4

0
.4

4

0
.2

1

0
.2

0
.5

6



Results: Lifetime
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Other Analyses in the Paper

 Empirical Study on Invalid Data in SSDs

 Reliability Issues in Physical Data Destruction

 Design Space Exploration for pLock and bLock

 Effectiveness of bLock command
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Conclusion

 Challenges of data sanitization in NAND flash-based SSDs:

 Erase-before-write property no overwrite on stored data

 Physical data destruction  high performance & reliability overheads

 Evanesco: Uses on-chip access-control mechanisms

 pLock: Page-level data sanitization

 Implements the access-permission flag of  each page using spare cells

 bLock: Block-level data sanitization

 Programs the SSL of a block to disconnect all pages

 SecureSSD: An Evanesco-Enabled SSD

 Supports selective data sanitization to reduce performance overheads

 Results

 Provides the same level of reliability of an unmodified SSD

 Validated w/ 160 real state-of-the-art 3D NAND flash chips

 Significantly improves performance and lifetime over existing data-sanitization techniques

 Provides comparable (94.5%) performance with an unmodified SSD
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